Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Photochem Photobiol ; 97(1): 47-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32654158

RESUMO

The present study details the experimental and theoretical characterization of the photophysical properties of 14 examples of 2-(phenylamino)-1,10-phenanthrolines (1). The absorption spectra of 1 are substituent-dependent but in a general manner present absorption bands at wavelengths of ~230; ~300; ~335 and a shoulder at ~380 nm. Electron-donating groups (EDG) and electron-withdrawing groups (EWG), respectively, result in bathochromic and hypsochromic shifts. Compounds 1 are highly luminescent, in contrast to phenanthroline, and emit in the region between 350 and 500 nm with substituent-dependent λmax emission. The emission spectra show a redshift for EDG (4-OMe 62 nm; 4-Me 19 nm) and a blueshift for EWG (4-CN 41 nm; 4-CF3 38 nm) relative to the emission of the unsubstituted parent compound 1a. Plotting the λ max EM against Hammett σ+ constants gave an excellent linear correlation demonstrating the electron-deficient nature of the excited state and how the substituents (de)stabilize S1 . Theoretical calculations revealed a HOMO-LUMO π-π* electronic transition to S1 which in combination with difference (S1 -S0 ) in electron density maps revealed charge-transfer character. Strongly electron-withdrawing substituents switch off the charge transfer to give rise to a local excitation.

2.
RSC Adv ; 9(24): 13386-13397, 2019 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35519567

RESUMO

The photochemical reactivity of the triplet state of pyrano- and furano-1,4-naphthoquinone derivatives (1 and 2) has been examined employing nanosecond laser flash photolysis. The quinone triplets were efficiently quenched by l-tryptophan methyl ester hydrochloride, l-tyrosine methyl ester hydrochloride, N-acetyl-l-tryptophan methyl ester and N-acetyl-l-tyrosine methyl ester, substituted phenols and indole (k q ∼109 L mol-1 s-1). For all these quenchers new transients were formed in the quenching process. These were assigned to the corresponding radical pairs that resulted from a coupled electron/proton transfer from the phenols, indole, amino acids, or their esters, to the excited state of the quinone. The proton coupled electron transfer (PCET) mechanism is supported by experimental rate constants, isotopic effects and theoretical calculations. The calculations revealed differences between the hydrogen abstraction reactions of phenol and indole substrates. For the latter, the calculations indicate that electron transfer and proton transfer occur as discrete steps.

3.
J Phys Chem A ; 117(2): 439-50, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23249266

RESUMO

The density functional theory (DFT) and quantum theory of atoms in molecules (QTAIM) have been used to study the lowest lying spin states of the photochemical hydrogen abstraction reaction by formaldehyde, acetaldehyde, and acetone in the presence of different hydrogen donors: propane, 2-propanol, and methylamine. Calculations of all the critical points on the PES of these reactions were performed at uB3LYP/6-311++G(d,p). Methylamine is the best hydrogen donor, in thermodynamic and kinetic terms, followed by 2-propanol and finally propane. Secondary C-H hydrogen abstraction in 2-propanol and C-H abstraction in methylamine is thermodynamically and kinetically favored with respect to hydrogen abstraction from the OH and NH functional groups. Charge transfer takes place before the transition state when methylamine is the hydrogen donor, and for other hydrogen donors, charge transfer begins only in the transition state. The extent of the charge transfer in the transition states corresponds to about 50% of the total change in electron density of the oxygen atom of the T(1) carbonyl compounds during the course of the hydrogen abstraction reactions. The effect of solvent was investigated using the continuum solvation model for the reaction of triplet acetaldehyde in acetonitrile, which resulted in a barrierless transition state for hydrogen abstraction from methylamine.


Assuntos
Acetaldeído/química , Acetona/química , Formaldeído/química , Hidrogênio/química , Cinética , Modelos Moleculares , Simulação de Dinâmica Molecular , Processos Fotoquímicos , Termodinâmica
4.
Photochem Photobiol Sci ; 11(7): 1201-9, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22441459

RESUMO

The influence of ring size on the photobehaviour of condensed 1,4-naphthoquinone systems, such as pyrano- and furano-derivatives (1 and 2, respectively) has been investigated. The absorption spectra for both families of naphthoquinones reveal clear differences; in the case of 2 they extend to longer wavelengths. A solvatochromic red shift in polar solvents is consistent with the π,π* character of the S(0)→ S(1) electronic transition in all cases. Theoretical (B3LYP) analysis of the HOMO and LUMO Kohn-Sham molecular orbitals of the S(0) state indicates that they are π and π* in nature, consistent with the experimental observation. A systematic study on the efficiency of singlet oxygen generation by these 1,4-naphthoquinones is presented, and values larger than 0.7 were found in every case. In accordance with these results, laser flash photolysis of deoxygenated acetonitrile solutions led to the formation of detectable triplet transient species with absorptions at 390 and 450 nm (1) and at 370 nm (2), with φ(ISC) close to 1. Additionally, the calculated energies for the T(1) states relative to the S(0) states at UB3LYP/6-311++G** are ca. 47 kcal mol(-1) for 1 and 43 kcal mol(-1) for 2. A comparison of the geometrical parameters for the S(0) and T(1) states reveals a marked difference with respect to the arrangement of the exocyclic phenyl ring whilst a comparison of electronic parameters revealed the change from a quinone structure to a di-dehydroquinone diradical structure.


Assuntos
Naftoquinonas/química , Oxigênio Singlete/química , Acetonitrilas/química , Lasers , Naftoquinonas/efeitos da radiação , Fotólise , Teoria Quântica , Solventes/química
5.
J Org Chem ; 76(13): 5264-73, 2011 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-21604796

RESUMO

The oxidative addition of anilines (2) with 1,4-naphthoquinone (3) to give N-aryl-2-amino-1,4-naphthoquinones (1) was found to be catalyzed by copper(II) acetate. In the absence of the catalyst, the reactions are slower and give lower yields with the formation of many colateral products. In the presence of 10 mol % hydrated copper(II) acetate, the reactions are generally more efficient in that they are cleaner, higher yielding, and faster.


Assuntos
Compostos de Anilina/química , Naftoquinonas/química , Naftoquinonas/síntese química , Compostos Organometálicos/química , Catálise , Estrutura Molecular , Oxirredução , Estereoisomerismo
6.
Phys Chem Chem Phys ; 12(36): 10746-53, 2010 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-20617250

RESUMO

The hydrogen abstraction (HA) reaction by the triplet of alpha-naphthoflavone (1) has been investigated experimentally by the use of laser flash photolysis (LFP) and theoretically with density functional theory (DFT) and atoms in molecules (AIM). The triplet excited state of 1, in acetonitrile, has an absorption maximum at 430 nm and lifetime of 10 micros. The quenching rate constants for the triplet of 1 with 1,4-cyclohexadiene, substituted phenols and amines were determined. The low reactivity of this ketone with respect to HA from 1,4-cyclohexadiene is in accord with a pi,pi* excited state. HA from phenols in acetonitrile is proposed to occur in a diffusion controlled reaction from free phenol based upon the determination of the Abraham beta(H)(2) value for acetonitrile and correction of the quenching rate constants for hydrogen bonding of the phenols to acetonitrile. A molecular orbital analysis of the triplet (SOMO and SOMO-1) of 1 reveals contributions from the carbonyl oxygen atom, but principally from the alpha-carbon and the associated pi-bond network, consistent with a pi,pi* excited state. From a thermodynamic point of view, the triplet HA from phenol to oxygen of the carbonyl group is 17 kcal mol(-1) less demanding than the transfer to the alpha-carbon, consistent with the acidic nature of the phenolic hydrogen atom. DFT and AIM analysis of the hydrogen abstraction reaction reveals that the transition state (TS) is pseudo-symmetrically polarized and that HA in the hydrogen bonded exciplex occurs in a concerted manner but not necessarily by simultaneous electron and proton transfer.


Assuntos
Benzoflavonas/química , Hidrogênio/química , Lasers , Fenóis/química , Fotólise/efeitos da radiação , Teoria Quântica , Absorção , Transporte de Elétrons , Solventes/química
7.
J Phys Chem A ; 111(6): 1117-22, 2007 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-17243656

RESUMO

Laser flash photolysis (LFP) studies, atoms in molecules (AIM) studies, and density functional theory (DFT) calculations have been performed in order to study the mechanism of the hydrogen abstraction by alpha-diketones in the presence of phenols. Laser irradiation of a degassed solution of 1,2-diketopyracene in acetonitrile resulted in the formation of a readily detectable transient with absorption at 610 nm, but with very low absorptivity. This transient decays with a lifetime of around 2 micros. The quenching rate constant for substituted phenols, kq, ranged from 1.10x10(8) L mol-1 s-1 (4-cyanophenol) to 3.87x10(9) L mol-1 s-1 (4-hydroxyphenol). The Hammett plot for the reaction of the triplet of 1,2-diketopyracene with phenols gave a reaction constant rho=-0.9. DFT calculations (UB3LYP/6-311++G**//UB3LYP/6-31G*) of the triplet complex ketone-phenol revealed that hydrogen transfer has predominantly occurred and that the reaction with alpha-diketones are generally 7 kcal/mol less endothermic than the respective reactions of the monoketones. These results together with the geometries obtained from the DFT calculations, natural bond order (NBO) analysis, and AIM results indicate that hydrogen abstraction for alpha-diketones is facilitated by the electrophilicity of the ketone, instead of neighboring group participation by the second carbonyl group.


Assuntos
Cetonas/química , Cetonas/efeitos da radiação , Lasers , Modelos Químicos , Fenóis/química , Fenóis/efeitos da radiação , Compostos Policíclicos/química , Compostos Policíclicos/efeitos da radiação , Modelos Moleculares , Estrutura Molecular , Fotólise , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...